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1. 

In a previous paper [1], the dynamic stability of a moving string in three-dimensional
vibration was studied. It was shown that the unstable regions would be shifted to the lower
frequency if the string transport speed increased and to the higher frequency if the wave
propagation speed increased. The non-linear vibrations of an axially moving string were
extensively studied [2–8]. The effect of magnetic field was not considered in these studies.

The interaction of electromagnetic fields with deformable media is closely related to
some fields of modern technology and nuclear physics. Moon and Pao [9, 10] showed that
the natural frequency of a beam–plate in a transverse magnetic field caused a buckled
phenomenon when it reached a critical value. Lu et al. [11] analyzed a model of a
magnetoelastic buckled beam subjected to an external axial periodic force in a periodic
transverse magnetic field. Wolfe and Seidman [12–14] studied a series of problems of the
hyperelastic conducting rod undergoing flexure, tension, shear, and extension in a parallel
magnetic field. In the symmetric case, which admits trivial solution, they proved that in
the trivial state, non-trivial solutions can exist if the field is strong enough. In the physical
sense, the trivial configuration of the system will cause the rod to remain straight and
untwisted. However, the rod is bent and twisted if the field is strong enough. To the
author’s knowledge, there is no paper concerning the dynamic stability of a moving string
in an alternating magnetic field.

This paper presents the dynamic stability of an axially moving string subjected to both
actions of an alternating uniform transverse magnetic field and a periodic tension force.
Owing to time-varying actions, terms with time-dependent coefficients appear in the
equations of motion which results in the existence of parametric instability. First,
Galerkin’s procedure is applied to discretize the continuous system into a
finite-degree-of-freedom system. Then, the equations of the discrete system are decoupled
by using a special modal analysis procedure [1, 15] which is suitable for the gyroscopic
systems. Finally, the first-order simultaneous differential equations are solved by the
method of multiple-scales. The system response and the expressions for the boundaries of
the unstable regions are obtained. It is well known that the unstable regions occurring at
the higher frequencies are better than those at the lower frequencies for most mechanical
applications. It is found in the present paper that the unstable regions will be shifted to
the lower frequencies when the string transport speed increases or the wave propagation
speed decreases.

2.   

A moving string passing through two fixed eyelets is modeled as shown in Figure 1. The
co-ordinate system (oxyz) is used to interpret the overall phenomenon of the system.
The values u(x, t), v(x, t), and w(x, t) are the displacement components of an arbitrary
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point P in the x, y and z directions, respectively. One assumes the moving string
subjected to both external perturbations, an alternating uniform transverse magnetic field
B=(B0 +B1 cos Vmft)j in the y direction, and a periodic tension force T=(T0+
T1 cos Vtft)i in the x direction. The definitions of the symbols are the same as those in
[1, 11].

Under the quasi-static assumption [10], the perturbed magnetic field caused by the
deformation at any instant is the same as that in the static case for the instantaneous
configuration. The frequency of the applied time-dependent magnetic field is assumed to
be low enough and the string diameter is sufficiently small, and hence the skin effect on
the magnetic field can be ignored.

The most general form of Hamilton’s principle is

g
t2

t1

(dL+ dW) dt=0, (1)

where dL is the variation of Lagrangian density which is the same as that reported in
Huang et al. [1]. dW is the total virtual work, and dW= dWf + dWm . dWf and dWm are
the virtual work respectively done by the viscous damping force and the external magnetic
field on the system.

By using the following dimensionless variables and parameters U= u/l, V= v/l, W=
w/l, j= x/l, t= c2t/l, T�=T1/T0, B�=B1/B0, V�mf =Vmfl/c2, V� tf =Vtfl/c2, c1 =z(EA/r),
c2 =z(T0/r), b= c/c2, b1 = c1/c2, h̄u =Cul/rc2, h̄v =Cvl/rc2, h̄w =Cwl/rc2, h̄m = sB2

0l/rc2,
one can write the dimensionless governing equations for the moving string system as

Utt +[h̄u + h̄m(1+B� cos V�mft)2](Ut + bUj)+2bUjt +[b2 − b2
1 − (1+T� cos V� tft)]Ujj

−b2
1(3UjUjj +VjVjj +WjWjj + 3

2UjjU2
j + 1

2UjjV2
j + 1

2UjjW2
j +UjVjVjj

+UjWjWjj)=−h̄mb(1+B� cos V�mft)2, (2a)

Vtt + h̄v(Vt + bVj)+2bVjt +[b2 −1−T� cos V� tft]Vjj

−b2
1(VjUjj +UjVjj + 1

2VjjU2
j + 3

2VjjV2
j + 1

2VjjW2
j +VjUjUjj +VjWjWjj)=0,

(2b)

Wtt +[h̄w + h̄m(1+B� cos V�mft)2](Wt + bWj)+2bWjt +[b2 −1−T� cos V� tft]Wjj

Figure 1. The string system subjected to magnetic field in the y direction and time-dependent tension in the
x direction.
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−b2
1(WjUjj +UjWjj + 1

2WjjU2
j + 1

2WjjV2
j + 3

2WjjW2
j +WjUjUjj +VjWjVjj)=0,

(2c)

and the dimensionless boundary conditions

U(0, t)=V(0, t)=W(0, t)=0, U(1, t)=V(1, t)=W(1, t)=0. (3a, b)

From the above governing equations (2a–c), the following observations are made: (i)
In the absence of the magnetic field, the system is the same as that in Huang et al. [1].
(ii) The Coriolis terms, 2bUjt , 2bVjt and 2bWjt , appear in three equations (2a–c) for the
moving string. (iii) It is seen that the alternating uniform transverse magnetic force,
h̄m(1+B� cos V�mft)2 appears in the equations (2a) and (2c) (x and z directions), but
physically it acts in the y direction. Thus, the vibration in the y direction will not be affected
by the magnetic field. (iv) The magnetic force acts as a damping effect in the x and z
directions. (v) The nonhomogeneous term, −h̄mb(1+B� cos V�mft)2, appears in the x
direction, and this term is proportional to the moving speed parameter b.

3.  

In order to solve these governing equations (2a–c), Galerkin’s method is used here to
discretize these governing equations. One can obtain three sets of ordinary differential
equations with respect to three axes:

ëm + s
a

n=1

[amnėn + bmnen ]− b2
16 s

a

n=1

s
a

i=1

[Dmni(3enei + fnfi + gngi)]

+ s
a

n=1

s
a

i=1

s
a

j=1

[Emnij(3
2eneiej + 1

2 fnfiej + 1
2gngiej + en fifj + engigj)]7= d0, (4a)

f� m + s
a

n=1

[dmn f� n + hmn fn ]− b2
16 s

a

n=1

s
a

i=1

[Dmni(fnei + enfi)]

Figure 2. The effect of mode number on the stable-unstable regions in the x direction where (p, q) denotes
the resonance near Vp +Vq . ——, Three modes; ----, 13 modes.
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Figure 3. The effect of mode number on the stable-unstable regions in the y direction where (p, q) denotes
the resonance near Vp +Vq . ——, Three modes; ----, 13 modes.

+ s
a

n=1

s
a

i=1

s
a

j=1

[Emnij(1
2eneifj + 3

2 fn fi fj + 1
2gngifj + fneiej + fngigj)]7=0, (4b)

g̈m + s
a

n=1

[kmnġn + lmngn ]− b2
16 s

a

n=1

s
a

i=1

[Dmni(gnei + engi)]

+ s
a

n=1

s
a

i=1

s
a

j=1

[Emnij(1
2eneigj + 1

2 fn figj + 3
2gngigj + gneiej + gn fi fj)]7=0, (4c)

where

amn =(h̄u + h̄m(1+B� cos V�mft)2)Amn +2bBmn ,

bmn =(bh̄u + bh̄m(1+B� cos V�mft)2)Bmn +[b2 − b2
1 − (1+T� cos V� tft)Cmn ,

Figure 4. The effect of mode number on the stable-unstable regions in the z direction where (p, q) denotes
the resonance near Vp +Vq . ——, Three modes; ----, 13 modes.
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Figure 5. The effect of the transport speed parameter b on the stable-unstable regions in the y direction where
(p, q) denotes the resonance near Vp +Vq . ——, b=0·1; ----, b=0·4; –·–·, b=0·7.

d0 =−g
1

0

h̄m(1+B� cos V�mft)2fm dj, dmn = h̄vAmn +2bBmn ,

hmn = bh̄vBmn +(b2 −1−T� cos V� tft)Cmn ,

kmn =(h̄w + h̄m(1+B� cos V�mft)2)Amn +2bBmn ,

lmn =(bh̄w + bh̄m(1+B� cos V�mft)2)Bmn +(b2 −1−T� cos V� tft)Cmn ,

Amn = g
1

0

fnfm dj =61, m= n
0, m$ n,

Bmn = g
1

0

f'nfm dj = 80,
2nm(cos mp cos np−1)

n2 −m2 , m$ n,

Figure 6. The effect of the transport speed parameter b on the stable-unstable regions in the z direction where
(p, q) denotes the resonance near Vp +Vq . ——, b=0·1; ----, b=0·4; –·–·, b=0·7.



566

1

0.2

187

ε

378

0.6

188 189 376 377 565

(1,1) (2,2) (3,3)
(c)

472

1

0.2

156 315

0.6

157 158 313 314 471

(1,1) (2,2) (3,3)
(b)

378

1

0.2

124 376

0.6

125 126 251 252 377

(1,1) (2,2) (3,3)
(a)

Ωtf

   176

Figure 7. The effect of the wave propagation speed b1 on the stable-unstable regions in the x direction where
(p, q) denotes the resonance near Vp +Vq. (a) b1 =20. (b) b1 =25. (c) b1 =30.

Cmn = g
1

0

f0n fm dj =6−(np)2,
0,

m= n
m$ n,

Dmni = g
1

0

f'nf0i fm dj =g
G

G

G

G

F

f

−0z2
21ni2p3,

0z2
21ni2p3,

0,

m=2n+ i
m=2n− i

otherwise,

Emnij = g
1

0

f'nf'i f0j fm dj = 8−
1
2nij2p4,
1
2nij2p4,

0,

m=2n2 i+ j
m=2n2 i− j
otherwise.

One defines both the tension ratio T� and the magnetic ratio B� to be the first order of
the small parameter o, that is T�=O(o) and B�=O(o), in the perturbation technique. The
damping terms h̄u = ohu , h̄v = ohv and h̄w = ohw are assumed to have the same order as the
first non-autonomous term. The magnetic constant h̄m = ohmf is also assumed to be a first
order term. Following the earlier work [1], a special modal analysis is used to decouple
the discrete gyroscopic system and then the multiple-scale method is employed to
approximate. The system responses and the expressions for the boundaries of the unstable
regions are obtained.
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Figure 8. The effect of magnetic field on the stable-unstable regions in the x direction where (p, q) denotes
the resonance near Vp +Vq . (——), without magnetic field hmf =0; (–––), without magnetic field hmf +0.5.

4.  

From the equations of motion, the natural frequencies of the transverse vibration are
Vm =mpz1− b2, 0E bE 1, m=1, 2, . . . . In this paper, the effects of various
parameters, including the parameter b of the string transport speed, the parameter b1 of
the wave propagation speed, and the external magnetic field hmf on the dynamic stability
will be analyzed.

Figures 2–4 show the effect of the mode numbers on the dynamic stability in the x, y
and z directions. The other parameters are b=0·1, b1 =20, hmf =0·1, and
hu = hv = hw =0·01. In these figures, ( p, q) denotes the resonance near Vp +Vq . It can be
seen in these figures that the unstable regions are shifted to the lower frequencies when
the mode number 13 is used. In the present simulations, when the mode number is larger
than 13, which is not shown here, the unstable regions are almost the same with those of
the mode number 13. Hence, in the following cases presented in this paper, the mode
number 13 is used.

Figure 9. The effect of magnetic field on the stable-unstable regions in the z direction where (p, q) denotes
the resonance near Vp +Vq . (——), without magnetic field hmf =0; (–––), with magnetic field hmf =0.5.
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Figures 5–6 present the stable–unstable regions in the y and z directions for the different
values of the transport speed parameter b=0·1, 0·4 and 0·7. The other parameters are
b1 =20, hmf =0·1, and hu = hv = hw =0·01. In these figures, the stable-unstable regions are
developed for the summed-type resonances. It is found that the unstable regions will be
shifted to the lower frequencies when the string transport speed parameter b increases.
Therefore, the string has the unstable region in the lower frequency domain when its
transport speed is higher.

The factors including damping coefficient, natural frequency and magnetic field will
affect the unstable regions of the system. The location of the unstable region will be near
the sum or the difference of any two natural frequencies of the string system. Moreover,
the natural frequencies vary in accordance with the change in the string transport speed
parameter b and the wave propagation speed parameter b1. Therefore, as these parameters
vary, the location of the unstable region will be shifted simultaneously.

The metal strings with the wave speed ratio c2
1/c2

2 =EA/T=O (400–1000) are considered
[8]. The rigidity of the string will dominate the natural frequency of the system.
The higher rigidity of the string has a higher natural frequency and a smaller unstable
region. The stable-unstable regions in the y and z directions will not be affected by the
parameters b1. In Figures 7(a–c), the stable–unstable regions with various values of the
wave propagation speed parameter b1 in the x direction are shown. The other parameters
are b=0·4, hmf =0·1 and hu = hv = hw =0·01. From these figures, it is found that as the
wave propagation speed parameter b1 increases, the unstable regions will be shifted toward
higher frequencies and the system becomes more stable.

From equation (2b), the unstable regions in the y direction are not affected by the
external magnetic field in the same direction. Figures 8 and 9 show that as the magnetic
field increases, the unstable regions in the x and z directions will become small or even
disappear. In these figures, the other parameters are b=0·4, b1 =20 and
hu = hv = hw =0·01.

5. 

The dynamic stability of an axially moving string with both actions of an alternating
uniform transverse magnetic field and a periodic tension force is investigated in this paper.
From previous studies, some conclusions are drawn.

(1) It is seen that the unstable regions in the y direction will not be affected by the
external magnetic field in the same direction.

(2) The transverse magnetic field causes the unstable regions to be smaller.
(3) The unstable regions will be shifted to the lower frequencies as the string transport

speed parameter increases or the wave propagation speed parameter decreases.
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